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Abstract—The setting of a Gaussian channel without power
constraints is considered. In this setting, proposed by Poltyrev,
the codewords are points in an n-dimensional Euclidean space
(an infinite constellation). The channel coding analog of the
number of codewords is the density of the constellation points,
and the analog of the communication rate is the normalized log
density (NLD). The highest achievable NLD with vanishing error
probability is known (which can be thought of as the capacity),
as well as error exponents for the setting. In this work we are
interested in the optimal NLD for communication when a fixed,
nonzero error probability is allowed. In classical channel coding
the gap to capacity is characterized by the channel dispersion
(and cannot be derived from error exponent theory). In the
unconstrained setting, we show that as the codeword length
(dimension) n grows, the gap to the highest achievable NLD is
inversely proportional (to the first order) to the square root of the
block length. We give an explicit expression for the proportion
constant, which is given by the inverse Q-function of the allowed
error probability, times the square root of 1

2
. In an analogy

to a similar result in classical channel coding, it follows that the
dispersion of infinite constellations is given by 1

2
nat

2 per channel
use. We show that this optimal convergence rate can be achieved
using lattices, therefore the result holds for the maximal error
probability as well. Connections to the error exponent of the
power constrained Gaussian channel and to the volume-to-noise
ratio as a figure of merit are discussed.

I. INTRODUCTION

Coding schemes over the Gaussian channel are traditionally

limited by the average/peak power of the transmitted signal

[1]. Without the power restriction (or a similar restriction) the

channel capacity becomes infinite, since one can space the

codewords arbitrarily far apart from each other and achieve a

vanishing error probability. However, many coded modulation

schemes take an infinite constellation (IC) and restrict the

usage to points of the IC that lie within some n-dimensional
form in Euclidean space (a ’shaping’ region). Probably the

most important example for an IC is a lattice, and examples

for the shaping regions include a hypersphere in n dimensions,

and a Voronoi region of another lattice [2].

In 1994, Poltyrev [3] studied the model of a channel with

Gaussian noise without power constraints. In this setting the

codewords are simply points in the n-dimensional Euclidean
space. The analog to the number of codewords is the density

γ of the constellation points (the average number of points

per unit volume). The analog of the communication rate is

the normalized log density (NLD) δ , 1
n log γ. The error
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probability in this setting can be thought of as the average

error probability, where all the points of the IC have equal

transmission probability (precise definitions follow later on in

the paper). Poltyrev showed that the NLD δ is the analog of

the rate in classical channel coding, and established the analog

term to the capacity, the ultimate limit for the NLD, denoted

δ∗. Random coding and sphere packing error exponent bounds

were also derived, which are analogous to Gallager’s error

exponents in the classical channel coding setting [4], and to

the error exponents of the power-constrained AWGN channel

[5], [4].

In classical channel coding, the channel capacity gives

the ultimate limit for the rate when arbitrarily small error

probability is required, and the error exponent quantifies the

(exponential) speed at which the error probability goes to

zero when the rate is fixed (and below the channel capacity).

Another question that is of interest is the following: for a

fixed error probability ε, what is the optimal (maximal) rate

that is achievable when the codeword length n is fixed. While

the exact answer for this question for any finite n is still

open (see [6] for the current state of the art), the speed at

which the optimal rate converges to the capacity is known.

By letting Rε(n) denote the maximal rate for which there

exist communication schemes with codelength n and error

probability at most ε, it is known that for a channel with

capacity C [7]:

Rε(n) = C −
√

V

n
Q−1(ε) +O

(

logn

n

)

, (1)

where Q−1(·) is the inverse complementary standard Gaussian
cumulative distribution function. The constant V , termed the

channel dispersion, is the variance of the information spectrum

i(x; y) , log PXY (x,y)
PX (x)PY (y)

for a capacity-achieving distribution.

More details and extensions can be found in [6].

In this paper we are interested in finding out whether the

behavior demonstrated in (1) exists in the setting of a Gaussian

channel without power constraints. We answer this question to

the positive. The main result is the following: for a given,

fixed, nonzero error probability ε, denote by δε(n) be the

maximal NLD for which there exists an IC with dimension

n and error probability at most ε. Then

δε(n) = δ∗ −
√

1

2n
Q−1(ε) +O

(

logn

n

)

, (2)



where δ∗ is the ultimate limit for the NLD with any dimension

[3], given by 1
2 log

1
2πeσ2 where σ2 is the variance of the

additive Gaussian noise (logarithms are taken w.r.t. to the

natural base e).
In the achievability part we use lattices (and the Minkowski-

Hlawka theorem [8]). Because of the regular structure of

lattices, our achievability result holds for the maximal error

probability. The proof technique used is somewhat different

than that used by Poltyrev in [3]. Here we use a suboptimal

’typicality decoder’, closer in spirit to that used in the standard

achievability proofs [9] (rather than the the the technical

ML decoder based proof [3]). In addition, a variant of the

typicality decoder can be used to prove Poltyrev’s random

coding exponent (see [10] for details). In the converse part of

the proof we consider the average error probability and any

IC (not only lattices), therefore our result (2) holds for both

average and maximal error probability, and for any IC (lattice

or not).

Another figure of merit for lattices (that can be defined

for general ICs as well) is the volume-to-noise ratio (VNR),

which generalizes the SNR notion (see, e.g. [11]). The VNR

quantifies how good a lattice is for channel coding over the

unconstrained AWGN. It is known that the VNR of any lattice

cannot be below 2πe, and that there exist lattices that approach
this value as the dimension grows. As a consequence of the

paper’s main result we show the asymptotical behavior of the

optimal VNR.

In the next section we discuss the relations of our result to

the error exponent theory and to the power constrained AWGN

channel. In Section III we go over the necessary notations

and state a key lemma that is required for our main result,

which is given in Section IV. In Section V we obtain the

optimal VNR as a consequence of the main result. Due to

space limitations only proof outlines are provided. Detailed

proofs and extensions can be found in [10].

II. CONNECTIONS TO ERROR EXPONENTS AND THE

POWER CONSTRAINED AWGN

By the similarity of Equations (1) and (2) we can isolate

the constant 12 and identify it as the dispersion of the uncon-

strained AWGN setting. In this section we discuss this fact

and its relation to classical channel coding and to the power-

constrained AWGN channel.

One interesting property of the channel dispersion theorem

(1) is the following connection to the error exponent. Under

some mild regularity assumptions, the error exponent can be

approximated near the capacity by

E(R) ∼= (C −R)2

2V
, (3)

where V is the channel dispersion. This property, which is

attributed to Shannon (see [6, Fig. 18]), holds for DMCs and

for the power constrained AWGN channel and is conjectured

to hold in more general cases. Note, however, that while the

parabolic behavior of the exponent hints that the gap to the

capacity should behave as O
(

1√
n

)

, the dispersion theorem

(1) cannot be derived directly from the error exponent theory

(even if the error probability was given by e−nE(R) exactly).

Analogously to (3), we examine the error exponent for the

unconstrained Gaussian setting. For NLD values above the

critical NLD δcr , 1
2 log

1
4πeσ2 (but below δ∗), the error

exponent is given by [3]:

E(δ, σ2) =
e−2δ

4πeσ2
+ δ +

1

2
log 2πσ2. (4)

By straightforward differentiation we get that the second

derivative (w.r.t. δ) of E(δ, σ2) at δ = δ∗ is given by 2,
so according to (3), it is expected that the dispersion for

the unconstrained AWGN channel will be 1
2 . This agrees

with our main result and its similarity to (1), and extends

the correctness of the conjecture (3) to the unconstrained

AWGN setting as well. It should be noted, however, that our

result provides more than just proving the conjecture: there

exist examples where the error exponent is well defined (with

second derivative), but a connection of the type (3) can only

be achieved asymptotically with ε → 0 (see, e.g. [12]). Our

result (2) holds for any finite ε.
Another indication that the dispersion for the unconstrained

setting should be 1
2 comes the connections to the the power

constrained AWGN. While the capacity 1
2 log(1 +P ) , where

P denotes the channel SNR, is clearly unbounded with P , the
form of the error exponent curve does have a nontrivial limit

as P → ∞. In [2] it was noticed that this limit is the error

exponent of the unconstrained AWGN channel (sometimes

termed the ’Poltyrev exponent’), where the distance to the

capacity is replaced by the NLD distance to δ∗. By this

analogy we examine the dispersion of the power constrained

AWGN channel at high SNR. In [6] the dispersion was found,

given (in nat
2 per channel use) by

VAWGN =
P (P + 2)

2(P + 1)2
. (5)

This term already appeared in Shannon’s 1959 paper on the

AWGN error exponent [5], where its inverse is exactly the

second derivative of the error exponent at the capacity (i.e.

(3) holds for the AWGN channel). It is therefore no surprise

that by taking P → ∞, we get the desired value of 1
2 , thus

completing the analogy between the power constrained AWGN

and its unconstrained version. This convergence is quite fast,

and is tight for SNR as low as 10dB (see Fig. 1).

III. PRELIMINARIES

A. Notation

We adopt most of the notations of Poltyrev’s paper [3]: Let

Cb(a) denote a hypercube in Rn

Cb(a) ,
{

x ∈ Rn s.t. ∀i|xi| <
a

2

}

. (6)

Let Ball(r) denote a hypersphere in Rn and radius r > 0,
centered at the origin

Ball(r) , {x ∈ Rn s.t. ‖x‖ < r}, (7)
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Fig. 1. The power-constrained AWGN dispersion (solid) vs. the uncon-
strained dispersion (dashed)

and let Ball(y, r) denote a hypersphere in Rn and radius r >
0, centered at y ∈ Rn

Ball(y, r) , {x ∈ Rn s.t. ‖x− y‖ < r}. (8)

Let S be an IC. We denote byM(S, a) the number of points
in the intersection of Cb(a) and the IC S, i.e. M(S, a) ,

|S⋂Cb(a) |. The density of S, denoted by γ(S), or simply
γ, measured in points per volume unit, is defined by

γ(S) , lim sup
a→∞

M(S, a)
an

. (9)

The normalized log density (NLD) δ is defined by

δ ,
1

n
log γ. (10)

It will prove useful to define the following:

Definition 1 (Expectation over a hypercube): Let f : S →
R be an arbitrary function. Let Ea[f(s)] denote the expectation
of f(s), where s is drawn uniformly from the code points that

reside in the hypercube Cb(a):

Ea[f(s)] ,
1

M(S, a)
∑

s∈S∩Cb(a)
f(s). (11)

Throughout the paper, an IC will be used for transmission

of information through the unconstrained AWGN channel with

noise variance σ2 (per dimension). The additive noise shall be
denoted by Z = [Z1, ..., Zn]

T . An instantiation of the noise

vector shall be denoted by z = [z1, ..., zn]
T .

For s ∈ S, let Pe(s) denote the error probability when s
was transmitted. When the maximum likelihood (ML) decoder

is used, the error probability is given by Pe(s) = Pr{s+Z /∈
W (s)}, where W (s) is the Voronoi region of s, i.e. the convex
polytope of the points that are closer to s than to any other

point s′ ∈ S. The maximal error probability is defined by
Pmax
e (S) , sup

s∈S
Pe(s), (12)

and the average error probability is defined by

Pe(S) , lim sup
a→∞

Ea[Pe(s)]. (13)

B. A Key Lemma

A key lemma that will be used throughout the paper is a

lemma regarding the norm of a Gaussian vector.

Lemma 1: Let Z = [Z1, ..., Zn]
T be a vector of n zero-

mean, independent Gaussian random variables, each with

mean σ2. Let r > 0 be a given arbitrary radius. Then the

following holds for any dimension n:
∣

∣

∣

∣

Pr{‖Z‖ > r} −Q

(

r2 − nσ2

σ2
√
2n

)∣

∣

∣

∣

≤ 6T√
n
, (14)

where Q(·) is the standard complementary cumulative distri-

bution function, ‖ · ‖ is the usual ℓ2 norm, and

T = E

[

∣

∣

∣

∣

X2 − 1√
2

∣

∣

∣

∣

3
]

≈ 3.0785, (15)

where X is a standard Gaussian RV.

Proof outline: The proof relies on the convergence of a

sum of independent random variables to a Gaussian random

variable, i.e. the central limit theorem. We first note that

Pr{‖Z‖ > r} = Pr

{

n
∑

i=1

Z2
i > r2

}

. (16)

Let Yi =
Z2

i−σ2

σ2
√
2
and let Sn , 1√

n

∑n
i=1 Yi. It is easy to verify

that Yi and Sn have zero mean and unit variance. It follows

that

Pr

{

n
∑

i=1

Z2
i ≥ r2

}

= Pr

{

Sn ≥
r2 − nσ2

σ2
√
2n

}

. (17)

Sn is a normalized sum of i.i.d. variables, and by the

central limit theorem converges to a standard Gaussian ran-

dom variables. The Berry-Esseen theorem (see, e.g. [13, Ch.

XVI.5]) quantifies the rate of convergence in the cumulative

distribution function sense, and states that for any α > 0

|Pr{Sn ≥ α} −Q(α)| ≤ 6T√
n
, (18)

where T = E[|Yi|3]. The proof of the lemma is completed by
applying the Berry-Esseen theorem to the RHS of (17).

IV. MAIN RESULT

A. Direct

In the direct part we show that for any fixed, nonzero error

probability ε > 0, there exist ICs with error probability at

most ε, and NLD δ according to (2). These ICs will be

lattices, and therefore the same result will hold for the maximal

error probability. For lattices the average error probability

is identical for all the code points, since all the Voronoi

cells of a lattice are congruent. In addition, the volume of

a voronoi cell is equal for all cells, and is equal to the

determinant of the lattice det Λ. The density (in code points

per volume unit) is therefore γ = (detΛ)−1, and the NLD is

δ = 1
n log γ = − 1

n log detΛ.



Theorem 1: Let ε > 0. There exists a lattice Λ with

maximal error probability at most ε, and NLD

δ = δ∗ −
√

1

2n
Q−1(ε) +O

(

1

n

)

. (19)

Proof outline: Let Λ be a lattice that is used as an IC

for transmission over the unconstrained AWGN. We consider

a suboptimal typicality decoder, which operates as follows.

Suppose that λ ∈ Λ is sent, and the point y = λ+z is received,

where z is the additive noise. Let r > 0 be an arbitrary radius.
If there is only a single point in the ball Ball(y, r), then this

will be the decoded word. If there are no codewords in the ball,

or more than one codeword in the ball, an error is declared

(one of the code points is chosen at random).

When analyzing the error probability we can assume w.l.o.g.

that the zero codeword was sent. We note that the average error

probability with the typicality decoder is bounded by

Pe(Λ) ≤Pr {Z /∈ Ball(r)} (20)

+
∑

λ∈Λ\{0}
Pr {Z ∈ Ball(λ, r) ∩ Ball(r)} ,

where Z denotes the noise vector. In order to bound the second

term in (20) we use a version of the Minkowski-Hlawka (MH)

theorem [8, Lemma 3, p. 65], and conclude that there exist a

lattice Λ for which (for any density γ > 0 and any ξ > 0)
∑

λ∈Λ\{0}
Pr {Z ∈ Ball(λ, r) ∩ Ball(r)}

≤ γ

∫

Rn

Pr {Z ∈ Ball(λ, r) ∩ Ball(r)} dλ + ξ.

The integral can be bounded by rnVn, the volume of Ball(r)

(where Vn = πn/2

Γ(n/2+1) is the volume of the unit sphere).

Combined with (20) we get that there exist a lattice Λ with

density γ, in which

Pe(Λ) ≤ Pr {‖Z‖ > r} + γVnr
n + ξ, (21)

where r > 0, γ > 0 and ξ > 0 can be chosen arbitrarily.

It appears that the dominant term in (21) is Pr {‖Z‖ > r}.
The intuition follows from the the converse result (Theorem

2 below), where Pr {‖Z‖ > r} is the only term in the lower

bound.

Let ε > 0 be the desired error probability. Determine r

s.t. Pr(‖Z‖ > r) = ε
[

1− 2√
n

]

, γ s.t. γVnr
n = ε√

n
, and

ξ = ε 1√
n
. This way it is assured that the error probability is

not greater than ε
[

1− 2√
n

]

+ ε√
n
+ ε√

n
= ε.

Define αn s.t. r2 = nσ2(1 + αn) (recall that r implicitly

depends on n as well). Using Lemma 1 and some algebra

gives

αn =

√

2

n
Q−1(ε) +O

(

1

n

)

. (22)

So far, we have shown the existence of a lattice Λ with error

probability at most ε. The NLD is given by δ = 1
n log γ =

1
n log ε

Vnrn
√
n
. The required result follows using (22), the

Stirling approximation for Vn and the Taylor approximation

for log(1 + x).

B. Converse

In the the direct part we have shown the existence of

good ICs with NLD that approaches the NLD capacity δ∗.
These ICs were lattices, and the convergence to δ∗ was of

the form

√

1
2nQ

−1(ε). We now show that this is the optimal

convergence rate, for any IC (not only for lattices).

The results in the converse part are concerned with the

average error probability Pe(S). A lower bound on the average

error probability is clearly a lower bound on the maximal error

probability as well.

Theorem 2: Let S be an IC with NLD δ = 1
n log γ and

average error probability Pe(S) = ε. Then the NLD δ is

bounded by

δ ≤ δ∗ −
√

1

2n
Q−1 (ε) +

1

2n
logn+O

(

1

n

)

. (23)

Proof outline: The proof has three parts. First we prove

the converse for ICs where all the Voronoi cells have an equal

volume. Then we extend the proof to ICs with some mild

regularity properties, and only then prove the converse for any

IC.

Suppose the Voronoi regions of S have the same volume 1
γ .

Such ICs include the important class of Lattices, as well as

many other constellation types. Suppose s ∈ S is sent. Let r
be the radius of a sphere with the same volume as the Voronoi

region W (s):

|W (s)| = 1

γ
= e−nδ = rnVn, (24)

therefore r = e−δV
− 1

n
n . By the equivalent sphere argument

[3][14], the probability that the noise leaves W (s) is lower

bounded by the probability to leave a sphere of the same

volume:

Pe(s) ≥ Pr{‖Z‖ ≥ e−δV
− 1

n
n }. (25)

By assumption, all the Voronoi regions have the same volume.

Therefore the bound (25) holds for any s ∈ S, and also for

the average error probability ε.
The probability Pr{‖Z‖ ≥ r}, or Pr{‖Z‖2 ≥ r2}, is equal

to the CDF of a χ2 random variable with n degrees of freedom.

There is no closed-form expression for the CDF of this prob-

ability distribution. In [3], this probability is lower bounded

by exp[−n(EL − o(1))], where EL is a function of δ and

σ2 only (and not n). This gives the sphere packing exponent

for this setting. In [14], this probability was calculated as a

sum of n/2 elements that gives the exact expression, but its

asymptotic behavior is hard to characterize. Here we use the

normal approximation in order to determine the behavior of

the NLD δ with n, where the error probability ε remains fixed.
Combined with Lemma 1 we have

ε ≥ Q

(

e−2δV
− 2

n
n − nσ2

σ2
√
2n

)

− 6T√
n
, (26)



where T is a constant given in (15). The desired result (23)

then follows from the Stirling and Taylor approximations.

We now extend the result to ICs with some mild regularity

assumptions:

Definition 2 (Regular ICs): An IC S is called regular, if:

1) There exists a radius r0 > 0, s.t. for all s ∈ S, the
Voronoi cell W (s) is contained in Ball(s, r0).

2) The density γ(S) is given by lima→∞
M(S,a)

an (rather

than lim sup in the original definition).

Let S be a regular IC. For s ∈ S, we denote by v(s)
the volume of the Voronoi cell of s, |W (s)|. We also de-

fine the average Voronoi cell volume of a regular IC by

v(S) , lim supa→∞ Ea[v(s)]. It can be shown that for a

regular IC, the average volume is the inverse of the density,

i.e. γ(S) = 1
v(S) .

Let SPB(v) denote the probability that the noise leaves a

sphere of volume v. By the equivalent sphere argument we

have Pe(s) ≥ SPB(v(s)) for all s ∈ S. It can be shown that

SPB(v) is a convex function of the volume v. We now extend

the equivalent sphere bound to the average volume as well:

Pe(S) = lim sup
a→∞

Ea[Pe(s)]

(a)

≥ lim sup
a→∞

Ea[SPB(v(s))]

(b)

≥ lim sup
a→∞

SPB(Ea[v(s)])

(c)
= SPB(lim sup

a→∞
Ea[v(s)])

= SPB(v(S)). (27)

(a) follows from the sphere bound for each individual point

s ∈ S, (b) follows from the Jensen inequality and the con-

vexity of SPB(·), and (c) follows since SPB(·) is continuous.
Following the same steps as in the constant Voronoi volume

case extends (23) to the case of regular ICs as well.

The final step in the converse proof is to extend (23) to

non-regular ICs. Such ICs include constellations which are

semi-infinite (e.g. contains points only in half of the space),

and also constellations in which the density oscillates with the

cube size a (and the formal limit γ does not exist). This is

done with the aid of a regularization process - for any IC S
with NLD δ and error probability ε, there exists a regular IC

S ′ with NLD δ′ and error probability ε′ which are close to δ
and ε respectively. Then we apply (23) on the regular IC S ′
and get the desired result. The technical details of the proof

and the regularization process can be found in [10].

V. VOLUME-TO-NOISE RATIO

The volume-to-noise ratio (VNR) of a lattice Λ is defined

µ(Λ, ε) ,
[Vol. of Voronoi region]2/n

[noise var.]
=

γ−2/n

σ2(ε)
, (28)

where σ2(ε) is the noise variance s.t. the error probability
is exactly ε. This dimensionless figure of merit offers another
way to quantify the goodness of the lattice for coding over the

unconstrained AWGN channel. Note that the VNR is invariant

to scaling of the lattice, and that the definition can be extended

to general infinite constellations.

The minimum possible value of µ(Λ, ε) over all lattices in
R

n is denoted by µn(ε), and it is known that for any 1 > ε >
0, limn→∞ µn(ε) = 2πe. Using the main result of the paper

we can show how µn(ε) approaches 2πe:
Theorem 3: For a fixed error probability ε > 0, The optimal

VNR µn(ε) is given by

µn(ε) = 2πe+

√

8π2e2

n
Q−1(ε) +O

(

logn

n

)

. (29)

Proof outline: By definition, the following relation holds

for any σ2:

µn(ε) =
e−2δε(n)

σ2
(30)

(note that δε(n) implicitly depends on σ
2 as well). (29) follows

from algebraic manipulations of the main result (2).

Note that the theorem can be slightly strengthened by using

the more delicate bounds on δε(n) in Theorems 1 and 2 rather

than the loose term O
(

logn
n

)

.
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